
Audio Engineering Society

Convention Paper
Presented at the 113th Convention

2002 October 5–8 Los Angeles, California, USA

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Automatic Design of Sound Synthesis
Techniques by means of Genetic
Programming

Ricardo A. Garcia 1
1

Chaoticom, Hampton Falls, New Hampshire 03844, USA

 rago@chaoticom.com

ABSTRACT

Design of Sound Synthesis Techniques (SST) is a hard problem. It is usually assumed that it requires human
ingenuity to find a suitable solution. Many of the SSTs commonly used are the fruit of experimentation and long
refinement processes. An automated approach for design of SSTs is proposed. The problem is stated as a search
in the multidimensional SST space. It uses Genetic Programming (GP) to suggest valid functional forms, and
standard optimization techniques to fit their internal parameters. A psychoacoustic auditory model is used to
compute the perceptual distance between the target and test sounds. The developed AGeSS (Automatic
Generator of Sound Synthesizers) system is introduced, and a simple example of the evolved SSTs is shown

INTRODUCTION
Sound synthesizers are usually implemented as
computer programs and algorithms that run in digital
computers and produce digital sound samples
(waveforms). These algorithms for sound generation
are termed Sound Synthesis Techniques (SSTs). An
SST can be dissected into a functional form and
internal parameters. The functional form (also
known as topology) describes the relationship
between the functions and elements in the algorithm,

while the internal parameters are variables that take a
particular value at the moment of implementation of
the algorithm (depending on the desired behavior).
Design of a SST is customarily limited to the
selection of a functional form from a set of
algorithms (i.e. “classic” SSTs) followed by
application of a mathematical technique for
estimation of the internal parameters to match a
target sound. The design of SSTs, more specifically
their functional form, is a very hard problem. It is
usually assumed that it requires human ingenuity to

GARCIA AUTOMATIC DESIGN OF SOUND SYNTHESIS TECHNIQUES

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 2

design an algorithm suitable for synthesizing sound
with certain characteristics. Many of the SSTs
commonly used are the fruit of experimentation and
a long refinement processes.
The efforts for automating the design of SSTs have
been mainly focused into automating the parameter
estimation stage of the internal parameters for a
given functional form.
Horner et al. [1] proposed an approach for
automating the internal parameter estimation of FM
synthesizers using evolutionary methods, in
particular Genetic Algorithms (GA). Johnson [2]
proposed an interesting approach to use evolutionary
methods and human listeners in an interactive system
to explore the parameter space of (Fonction d’Onde
Formantique) FOF synthesis. Wehn [3] used GA to
explore the parameter space of FM-like synthesizers,
and allowed some degree of variation in the
functional forms.
Our goal is to propose a general approach capable of
suggesting valid functional forms and internal
parameters for a SST to synthesize a target sound,
using a known set of inputs (time varying signals).
This problem is related to the system identification,
or symbolic regression problem stated in control
theory. The inputs and outputs of the system are
known, but the system is unknown.

Approach
The SST space is defined as the space spanned by all
the possible combinations of a given set of functional
elements and their connections. Every point in the
SST space defines completely a functional form and
its set of internal parameters. Design of a SST is then
regarded as a search in the SST space. The goal is to
“find” a point in this space that is capable of
producing a sound “close” to the target sound using
the given inputs. This measure of “closeness” is done
using an “error metric”. The search in this space is
performed using a class of evolutionary computation
method called Genetic Programming (GP). GP has
shown outstanding empirical performance in
searching complex multidimensional spaces [4-6].
Custom SST representations in the form of topology
graphs and expression trees are used along with their
required mapping rules. Topology graphs are the
most widely used representation for SST, but they
are difficult to manipulate. Expression trees facilitate
the level of manipulation required to use GP for
exploring the SST space. A complete discussion of
this research can be found in [7].

REPRESENTATION OF SSTS
SSTs are computer algorithms designed to produce
sound samples. Algorithms are usually represented
using: mathematical formulas, instruction lists
(pseudocode) or topology graphs (flow diagrams).
All of them are equivalent representation (posses the
same information), but offer different advantages
from the viewpoint of a human designer.

 evaluate sin(x)
 assign result to P
 evaluate 2*P
b) assign result to Q
 evaluate Q+0.5
 assign result to Y
 output Y

5.0)sin(2 += xy

a)

c)

sin()

0.5

X

Y

2

+

x

Figure 1. Representations of algorithm: a) formula,
b) pseudocode and, c) topology graph

Representing SSTs as expression trees
Topology graphs of complex SSTs are usually in the
form of cyclic graphs (with closed loops).
Manipulating this kind of graph is very difficult.
Addition, deletion or reconnection of functional
elements can render a topology invalid very easy. In
addition, if the “designer” in charge of manipulating
these topologies is a computer program (as it is the
goal), the easier the manipulation, the less probability
of creating useless SSTs. Expression trees are graphs
that are very easy to manipulate by following a small
set of construction rules. It makes sense to try to find
a mapping between an “easy-to-manipulate”
expression tree graph into a “difficult-to-manipulate”
topology graph.
An ingenious idea borrowed from developmental
biology suggests a way of doing this. The idea is to
encode in the expression tree the instructions for the
“development” of an embryonic topology. The
process begins with a very simple embryo, and
following the instructions it “grows” the fully
developed topology. It can even include the
development for the internal parameters associated
with the functional elements. Problems similar to this
one that involved development of topology graphs
from expression trees were suggested by Koza et al.
[6, 8] that used a mapping into analog circuit
topologies; and Gruau [9] that mapped trees into
neural network families.

GARCIA AUTOMATIC DESIGN OF SOUND SYNTHESIS TECHNIQUES

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 3

Suggested mapping: expression tree into
topology graph
The nodes in the expression trees are instructions
that when executed will result in a fully developed
topology graph. Every expression tree will render a
unique topology graph, but it is possible to have
more than one tree to render the same topology
graph. The initial topology graph is called embryo,
and in our case it is a simple topology with four
blocks, as seen in Figure 2 The embryo has a single
modifiable object TYPE_A with no functional
element assigned yet, and connected to two sources
and one renderer. The sources and the renderer will
remain the same during the whole development
process, but the modifiable object will change and
new blocks and connections will be created. This
configuration of the embryo could be different (to
suit the design specifications, i.e. the number of time
varying inputs), but has been chosen for explicatory
purposes here. Figure 2 shows a simple expression
tree, embryo and first steps of development of a
topology. The first node of the expression tree is the
START node, and this is ignored during the
development process. The second node is “pointing”
to the modifiable object number 1. When executed,
this node will change the topology graph, more
specifically the object that is pointed to in some way.
In this case, the node has the instruction MULT, so
the type MULT is assigned to the particular block in
the topology graph.
The next node has the instruction SERIES1. The
effect of this instruction is to add some new blocks
and connections to our topology graph, and to create
more “pointers” to different nodes in different new

branches of the expression tree. After executing this
Topology Modifying Function, several new blocks
and connections are introduced into the topology
graph. Each one of the new objects is modifiable,
and has an associated node pointing to it. The rest of
the nodes are executed, and this adds, modifies, or
changes blocks and their connections into the
topology graph. A complete repertoire of topology
development functions can be found in [7].

Functional elements
From an analysis of several “classic” SSTs [10-12], a
set of commonly used basic functional elements was
extracted. They are called “classic SSTs” because
they have been used and studied by researchers and
musicians over many years, and offer a good
approximation for a set of functional elements. This
is a list of the main types of functional elements
found in our taxonomy:

• Sinusoidal oscillators (variable amplitude,
frequency, phase over time)

• Wavetable oscillator (variable amplitude, read
index)

• Delay (memory) for one or more samples
• Controlled gain filter
• Noise generator
• Time varying filters (coefficients can change

over time)
• Addition
• Multiplication

Step 1
SOURCE 0

SOURCE 1

1
RENDER 0MULT

Step 0
SOURCE 0

SOURCE 1

1
RENDER 0

EMBRYO

Step 2

SOURCE 0

SOURCE 1 RENDER 0
3 2

1
MULT

Step 3
SOURCE 0

SOURCE 1 RENDER 0
3 2

1
MULT

ADD

Step 4
SOURCE 0

SOURCE 1 RENDER 0
3 2

1
MULT

ADDKOSCIL

GARCIA AUTOMATIC DESIGN OF SOUND SYNTHESIS TECHNIQUES

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 4

DESIGN OF SST
Design of an algorithm is defined as “the process that
conceives the structural form and internal parameters
of an algorithm, capable of producing a desired set of
outputs, using a known set of inputs”. The
specifications for the design are usually given as sets
of “examples”. Each example comprises a set of
inputs and a target output (desired behavior). It is
necessary to specify as well an Error Metric to
measure the performance of a given SST. Design of
an SST is usually a two-stage process: first selection
of a functional form and, second parameter
estimation.

Classic design
In classic SSTs design a human realizes the first
stage of the process. Functional forms are usually
never conceived from scratch for a particular target
sound. Instead, the designer selects one “template”
from a set of known functional forms (i.e. the classic
SST) based on the characteristics of the target sound,
and the known capabilities of the tentative functional
forms. In the second stage, the designer selects an
approach for parameter estimation, and uses it to find
the internal parameters that better “fit” the selected
functional form to produce a sound “close” to the
target sound. This part of the process has been
automated with high success [1] for FM synthesis
parameter estimation. The designer usually tries a
handful of functional forms to select the one that
results in a better match to the target sound.

INPUTS OUTPUT
target

Parameter
Estimation

LPC
ADDITIVE

FM
FM

…

selection
by human

human
judgement

use SST

Figure 3 Classic design of SST. Human selects a
fixed Functional Form from a pre-defined set (i.e.
“classic” SST) and uses a parameter estimation
method. Human judges if the results are satisfactory
or repeats process with new functional form

Proposed approach for design
Our proposed approach tries to remove as much
human intervention from the design process as
possible. The first change (and maybe the most
important) is to replace the first stage of selection of
a pre-made functional form, with a “functional-form
suggesting mechanism”. This mechanism will
suggest valid functional forms that can be tested to

see if they are good or not for the desired goal. The
second stage remains the same, and it consists in the
parameter estimation for the “selected” functional
form to try to match the target sound. Another point
where the human intervention can be reduced is in
the “error comparison” between the output sound
and the target sound. This comparison (error metric)
will return a value that will be used for suggesting a
new functional form, and it will try to minimize the
error. The procedure is repeated until the error falls
within acceptable limits.

INPUTS OUTPUT
target

Parameter
Estimation

SST suggestion
use SST

“error”
function

functional form +
initial parameters

functional
elements

Figure 4 Suggested approach for design. Automated
suggestion of Functional Forms, parameter
estimation, and automated comparison of
target/output sounds fed back in suggestion block.

Parameter estimation
Once a functional-form has been selected (or
suggested), the number and type of internal
parameters remains fixed. A technique for parameter
estimation can be used to find a set of values for
those parameters that will reduce the error between
the produced output and the target sound. This is
usually done using either mathematical analysis or
optimization methods. The approach selected
depends mainly in the type of functional form to be
optimized and in the precision needed for its internal
parameters. Some of the mathematical analysis tools
commonly used include Fourier and Cepstral
analysis. When a direct mathematical analysis is not
convenient, it is possible to use a numerical method
to approximate a “good” set of internal parameters.
These methods explore the parameter space in a
guided manner, and return usually a locally optimal
set of parameters that accomplish the desired
behavior for the SST. Note that the error metric plays
a fundamental role in the exploration of the
parameter space and, ultimately, in the selection of
the parameters.

DESIGN AS A SEARCH IN SST SPACE
All the possible valid combinations of functional
elements, connections and internal parameters
compose the SST space.

GARCIA AUTOMATIC DESIGN OF SOUND SYNTHESIS TECHNIQUES

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 5

Hypothesis: Given a set of inputs, a target sound and
an error metric, it is possible to find the functional-
form and internal parameters of a SST capable of
synthesizing an output sound “close” to the target
sound.
Our original goal of designing a SST (functional
form and internal parameters) can then be stated as a
search problem in the SST space. The next step is to
define a search strategy to efficiently and adaptively
explore this space and find an acceptable solution to
our problem. The SST space has many dimensions
and is highly non linear. Each point in this space
represents a different SST (with different functional
form and internal parameters). Evolutionary methods
have been shown to perform very well in complex
search spaces. [4, 13].

Genetic Programming (GP)
Genetic Programming (GP) is an
optimization/search method that has been gaining
popularity in the last decade. It is an extension of
Genetic Algorithms, and both belong to the field of
Evolutionary Computation. The idea with GP is to
have a population of candidate solutions (in our case,
suggested SSTs) that will be evaluated and a fitness
value assigned to each. The fitness function gives an
analytical measure of the performance of the
individual and its output. Once all the individuals in
the population have computed their fitness value, a
new population of candidate solutions is created by
probabilistically selecting individuals and performing
genetic operations on them. The probability of being
selected to be part of a genetic operation is directly
related to the fitness of the individual: the better the
fitness, the higher the probability. The genetic
operations will create new individuals by: copy
(identical copy of an individual), mutation (random
alteration of an individual functional form and/or
internal parameters), or crossover (characteristics of
two individuals are fused together to create a new
one). The process is repeated until a candidate
solution that shows a fitness value that fulfills the
specifications is found, or a maximum allowed
number of generations have been tested.

Figure 5 Genetic Programming loop

Fitness functions
In any kind of optimization or search method, it is
fundamental to have a way to measure the
performance of the candidate solution. This
performance metric is usually called a fitness
function or error metric. Fitness functions (FF) give
some numerical grade to the difference between the
outputs of the system compared to a desired target.
The features that are measured in a fitness function
vary from application to application. In our case, for
sound synthesis techniques and sound sample
sequences (waveforms) as targets, it is usual to
define fitness functions that measure the distance
between two sounds, or how “similar” they are. An
analytical fitness function that uses the Least Squares
Error (LSE) of the magnitude spectrograms (of
Target and produced sounds) has been successfully
applied by Horner et al. [1], and showed good results
with this project. An enhancement for this fitness
function was to include phase information. The LSE
of the phase spectrograms, weighted with the
magnitude of the target sound was successfully used
in most of the test performed [7, 14]. Perceptual
fitness functions are more difficult to compute
because of their subjective nature. A fitness function
that incorporates a psychoacoustic model of
simultaneous frequency masking [15-17] was

GARCIA AUTOMATIC DESIGN OF SOUND SYNTHESIS TECHNIQUES

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 6

developed and used successfully in some tests
performed [7].

AGeSS SYSTEM
A system implementing the proposed approach called
AGeSS (Automatic Generation of Sound
Synthesizers) has been developed and tested. The
system is implemented as a set of binaries (compiled
for ANSI C++) and Matlab scripts. The user is
required to supply the parameters for the GP run, as
well as the “examples” for the system.

USER
AGeSS

SYSTEM

Inputs
- Run parameters
- Examples

Output
Suggested expression tree

Figure 6 AGeSS system: user input (parameters,
examples of control signals and Target). Output
(suggested expression tree)

EXAMPLE
The developed AGeSS system was used to perform a
series of experiments to explore the potential of the
suggested approach. One of them is outlined here.
A simple FM synthesis formula was chosen for this
experiment [10, 12], as shown in equation 1. This
SST has been explored in depth by many researchers
and musicians. The value of the internal parameters
was taken from the original values suggested by
Chowning for simulating a woodwind sound [18].

+=

FS

M
IM

FS

C
tAts f

f
f πππ 2sin22sin)()((1)

fC = Carrier frequency = 880 , 988 = f(t)

fM = Modulator frequency = 880/3, 988/3 = f(t)/3

I = index of modulation = 2
FS = sampling frequency = 8000
A(t) = time varying envelope
This SST uses two time varying inputs: A(t) and f(t)
and 3 internal parameters I, D, M. For the generation
of the Target sound, two time varying signals were
generated (using Matlab) to simulate the brass sound
of two distinct notes (A880, B988) of 0.3 seconds
each. These can be seen in Figure 7.

Figure 7 Input signals (top) Envelope for two notes.
(bottom) Normalized pitch for two notes (A880,
B988).

The selected fitness function uses the simultaneous
frequency masking fitness function. It calculates the
spectrogram of the target sound and uses this to
calculate the threshold of masking of the target. This
information, along with the spectrogram of the
output sound is used to calculate a distance metric.

Figure 8 Spectrogram and waveform of TARGET
signal formed by two notes (A880, B988).

Figure 9 Spectrogram, waveform and topology for
best individual of Generation 220

Note that the final spectrum agrees with the target in
all the frequencies of the harmonics. But the final
spectrum has higher energy at the high end of the
spectrum. The topology evolved in generation 220 is
shown in Figure 9. It is possible to analyze the

GARCIA AUTOMATIC DESIGN OF SOUND SYNTHESIS TECHNIQUES

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 7

functional elements and their connections to find the
close form formula representation of the topology. In
this case, it is represented in equation 2.

()() ()()2010021)()()()()()(ktfkosciltfosciltftfkosciltAkts +×+=
 (2)

Comparison between equations1 and 2 shows a close
similarity in their functional form.

CONCLUSIONS
Design is stated as a search in the multidimensional
SST space. Each point in this space will represent a
different functional form and set of internal
parameters. The goal is then to find a point in the
SST space that will fulfill the specifications of
design. It is not clear how neighboring points are
related in this representation. In addition, the number
of possible points in this space is huge, making it
impossible to do a thorough search of the space.
These characteristics make the search of the SST
space a very complex problem. Evolutionary
methods, such as Genetic Programming, have proved
satisfactory when dealing with these types of
problems. The experiments show that the selected set
of functional elements and the representation scheme
are effective for the automated design of some
common synthesis algorithms, especially the
frequency modulation techniques.

REFERENCES

[1] A. Horner, J. Beauchamp, and L. Haken,

"Machine Tongues .16. Genetic Algorithms
and Their Application to Fm Matching
Synthesis," Computer Music Journal, vol.
17, pp. 17-29, 1993.

[2] C. G. Johnson, "Exploring the sound-space
of synthesis algorithms using interactive
genetic algorithms," presented at
Proceedings of the AISB Workshop on
Articial Intelligence and Musical Creativity,
Edinburgh, 1999.

[3] K. Wehn, "Using ideas from natural
selection to evolve synthesized sounds,"
presented at Proceedings of the Digital
Audio Effects DAFX98 workshop,
Barcelona, 1998.

[4] J. R. Koza, Genetic programming : on the
programming of computers by means of
natural selection. Cambridge, Mass.: MIT
Press, 1992.

[5] J. R. Koza, Genetic programming II :
automatic discovery of reusable programs.
Cambridge, Mass.: MIT Press, 1994.

[6] J. R. Koza, Genetic programming III :
darwinian invention and problem solving.
San Francisco: Morgan Kaufmann, 1999.

[7] R. A. Garcia, "Automatic Generation of
Sound Synthesis Techniques," in Program
in Media Arts & Sciences: Massachusetts
Institute of Technology, 2001, pp. 98 p.

[8] J. R. Koza, F. H. Bennett, III, D. Andre, M.
A. Keane, and F. Dunlap, "Automated
synthesis of analog electrical circuits by
means of genetic programming," IEEE
Transactions on Evolutionary Computation,
vol. 1, pp. 109 - 128, 1997.

[9] F. Gruau, "Cellular encodign of genetic
neural networks," Ecole Normale Superiéure
de Lyon, Lyon 92-21, May 1992 1992.

[10] C. Roads, The computer music tutorial.
Cambridge, Mass.: MIT Press, 1994.

[11] G. Depoli, "A Tutorial on Digital Sound
Synthesis Techniques," Computer Music
Journal, vol. 7, pp. 8-26, 1983.

[12] R. C. Boulanger, "The Csound book :
perspectives in software synthesis, sound
design, signal processing, and
programming,". Cambridge, Mass.: MIT
Press, 2000.

GARCIA AUTOMATIC DESIGN OF SOUND SYNTHESIS TECHNIQUES

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 8

[13] N. A. Gershenfeld, The nature of
mathematical modeling. New York:
Cambridge University Press, 1999.

[14] R. A. Garcia, "Growing Sound Synthesizers
using Evolutionary Methods," presented at
Sixth European Conference on Artificial
Life. Workshop on Artificial Life Models for
Musical Applications, Prague, Czech
Republic, 2001.

[15] J. G. Roederer, The physics and
psychophysics of music : an introduction,
3rd ed. New York: Springer-Verlag, 1995.

[16] K. C. Pohlmann, Principles of digital audio,
3rd ed. New York: McGraw-Hill, 1995.

[17] P. R. Cook, "Music, cognition, and
computerized sound : an introduction to
psychoacoustics,". Cambridge, Mass.: MIT
Press, 1999.

[18] J. Chowning, "The synthesis of complex
audio spectra by means of frequency
modulation," Journal of the Audio
Engineering Society, vol. 21, pp. 526-534,
1973.

