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ABSTRACT 

Design of Sound Synthesis Techniques (SST) is a hard problem. It is usually assumed that it requires human 
ingenuity to find a suitable solution. Many of the SSTs commonly used are the fruit of experimentation and long 
refinement processes. An automated approach for design of SSTs is proposed. The problem is stated as a search 
in the multidimensional SST space. It uses Genetic Programming (GP) to suggest valid functional forms, and 
standard optimization techniques to fit their internal parameters. A psychoacoustic auditory model is used to 
compute the perceptual distance between the target and test sounds. The developed AGeSS  (Automatic 
Generator of Sound Synthesizers) system is introduced, and a simple example of the evolved SSTs is shown 
 
 

  
INTRODUCTION 
Sound synthesizers are usually implemented as 
computer programs and algorithms that run in digital 
computers and produce digital sound samples 
(waveforms). These algorithms for sound generation 
are termed Sound Synthesis Techniques (SSTs).  An 
SST can be dissected into a functional form and 
internal parameters. The functional form (also 
known as topology) describes the relationship 
between the functions and elements in the algorithm, 

while the internal parameters are variables that take a 
particular value at the moment of implementation of 
the algorithm (depending on the desired behavior). 
Design of a SST is customarily limited to the 
selection of a functional form from a set of 
algorithms (i.e. “classic” SSTs) followed by 
application of a mathematical technique for 
estimation of the internal parameters to match a 
target sound. The design of SSTs, more specifically 
their functional form, is a very hard problem. It is 
usually assumed that it requires human ingenuity to 
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design an algorithm suitable for synthesizing sound 
with certain characteristics. Many of the SSTs 
commonly used are the fruit of experimentation and 
a long refinement processes.  
The efforts for automating the design of SSTs have 
been mainly focused into automating the parameter 
estimation stage of the internal parameters for a 
given functional form. 
Horner et al. [1] proposed an approach for 
automating the internal parameter estimation of FM 
synthesizers using evolutionary methods, in 
particular Genetic Algorithms (GA). Johnson [2] 
proposed an interesting approach to use evolutionary 
methods and human listeners in an interactive system 
to explore the parameter space of (Fonction d’Onde 
Formantique) FOF synthesis. Wehn [3] used GA to 
explore the parameter space of FM-like synthesizers, 
and allowed some degree of variation in the 
functional forms. 
Our goal is to propose a general approach capable of 
suggesting valid functional forms and internal 
parameters for a SST to synthesize a target sound, 
using a known set of inputs (time varying signals). 
This problem is related to the system identification, 
or symbolic regression problem stated in control 
theory. The inputs and outputs of the system are 
known, but the system is unknown. 
 
Approach 
The SST space is defined as the space spanned by all 
the possible combinations of a given set of functional 
elements and their connections. Every point in the 
SST space defines completely a functional form and 
its set of internal parameters. Design of a SST is then 
regarded as a search in the SST space. The goal is to 
“find” a point in this space that is capable of 
producing a sound “close” to the target sound using 
the given inputs. This measure of “closeness” is done 
using an “error metric”. The search in this space is 
performed using a class of evolutionary computation 
method called Genetic Programming (GP). GP has 
shown outstanding empirical performance in 
searching complex multidimensional spaces [4-6]. 
Custom SST representations in the form of topology 
graphs and expression trees are used along with their 
required mapping rules. Topology graphs are the 
most widely used representation for SST, but they 
are difficult to manipulate. Expression trees facilitate 
the level of manipulation required to use GP for 
exploring the SST space. A complete discussion of 
this research can be found in [7]. 

 
REPRESENTATION OF SSTS 
SSTs are computer algorithms designed to produce 
sound samples. Algorithms are usually represented 
using: mathematical formulas, instruction lists  
(pseudocode) or topology graphs (flow diagrams). 
All of them are equivalent representation (posses the 
same information), but offer different advantages 
from the viewpoint of a human designer. 

 evaluate sin(x) 
 assign result to P 
 evaluate 2*P 
b) assign result to Q 
 evaluate Q+0.5 
 assign result to Y 
 output Y 
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Figure 1. Representations of algorithm: a) formula, 
b) pseudocode and, c) topology graph 

Representing SSTs as expression trees 
Topology graphs of complex SSTs are usually in the 
form of cyclic graphs (with closed loops). 
Manipulating this kind of graph is very difficult. 
Addition, deletion or reconnection of functional 
elements can render a topology invalid very easy. In 
addition, if the “designer” in charge of manipulating 
these topologies is a computer program (as it is the 
goal), the easier the manipulation, the less probability 
of creating useless SSTs. Expression trees are graphs 
that are very easy to manipulate by following a small 
set of construction rules. It makes sense to try to find 
a mapping between an “easy-to-manipulate” 
expression tree graph into a “difficult-to-manipulate” 
topology graph. 
An ingenious idea borrowed from developmental 
biology suggests a way of doing this. The idea is to 
encode in the expression tree the instructions for the 
“development” of an embryonic topology. The 
process begins with a very simple embryo, and 
following the instructions it “grows” the fully 
developed topology. It can even include the 
development for the internal parameters associated 
with the functional elements. Problems similar to this 
one that involved development of topology graphs 
from expression trees were suggested by Koza et al. 
[6, 8] that used a mapping into analog circuit 
topologies; and Gruau [9] that mapped trees into 
neural network families. 
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Suggested mapping: expression tree into 
topology graph 
The nodes in the expression trees are instructions 
that when executed will result in a fully developed 
topology graph. Every expression tree will render a 
unique topology graph, but it is possible to have 
more than one tree to render the same topology 
graph. The initial topology graph is called embryo, 
and in our case it is a simple topology with four 
blocks, as seen in Figure 2 The embryo has a single 
modifiable object TYPE_A with no functional 
element assigned yet, and connected to two sources 
and one renderer. The sources and the renderer will 
remain the same during the whole development 
process, but the modifiable object will change and 
new blocks and connections will be created. This 
configuration of the embryo could be different (to 
suit the design specifications, i.e. the number of time 
varying inputs), but has been chosen for explicatory 
purposes here. Figure 2 shows a simple expression 
tree, embryo and first steps of development of a 
topology. The first node of the expression tree is the 
START node, and this is ignored during the 
development process. The second node is “pointing” 
to the modifiable object number 1. When executed, 
this node will change the topology graph, more 
specifically the object that is pointed to in some way. 
In this case, the node has the instruction MULT, so 
the type MULT is assigned to the particular block in 
the topology graph. 
The next node has the instruction SERIES1. The 
effect of this instruction is to add some new blocks 
and connections to our topology graph, and to create 
more “pointers” to different nodes in different new 

branches of the expression tree. After executing this 
Topology Modifying Function, several new blocks 
and connections are introduced into the topology 
graph. Each one of the new objects is modifiable, 
and has an associated node pointing to it. The rest of 
the nodes are executed, and this adds, modifies, or 
changes blocks and their connections into the 
topology graph. A complete repertoire of topology 
development functions can be found in [7]. 
 
Functional elements 
From an analysis of several “classic” SSTs [10-12], a 
set of commonly used basic functional elements was 
extracted. They are called “classic SSTs” because 
they have been used and studied by researchers and 
musicians over many years, and offer a good 
approximation for a set of functional elements. This 
is a list of the main types of functional elements 
found in our taxonomy: 

• Sinusoidal oscillators (variable amplitude, 
frequency, phase over time) 

• Wavetable oscillator (variable amplitude, read 
index) 

• Delay (memory) for one or more samples 
• Controlled gain filter 
• Noise generator 
• Time varying filters (coefficients can change 

over time) 
• Addition 
• Multiplication 
 

Step 1
SOURCE 0

SOURCE 1

1
RENDER 0MULT

Step 0
SOURCE 0

SOURCE 1

1
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SOURCE 1 RENDER 0
3 2
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SOURCE 0

SOURCE 1 RENDER 0
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DESIGN OF SST 
Design of an algorithm is defined as “the process that 
conceives the structural form and internal parameters 
of an algorithm, capable of producing a desired set of 
outputs, using a known set of inputs”. The 
specifications for the design are usually given as sets 
of “examples”. Each example comprises a set of 
inputs and a target output (desired behavior). It is 
necessary to specify as well an Error Metric to 
measure the performance of a given SST. Design of 
an SST is usually a two-stage process: first selection 
of a functional form and, second parameter 
estimation. 
 
Classic design 
In classic SSTs design a human realizes the first 
stage of the process. Functional forms are usually 
never conceived from scratch for a particular target 
sound. Instead, the designer selects one “template” 
from a set of known functional forms (i.e. the classic 
SST) based on the characteristics of the target sound, 
and the known capabilities of the tentative functional 
forms. In the second stage, the designer selects an 
approach for parameter estimation, and uses it to find 
the internal parameters that better “fit” the selected 
functional form to produce a sound “close” to the 
target sound. This part of the process has been 
automated with high success [1] for FM synthesis 
parameter estimation. The designer usually tries a 
handful of functional forms to select the one that 
results in a better match to the target sound. 
 

INPUTS OUTPUT
target

Parameter
Estimation

LPC
ADDITIVE

FM
FM

…

selection 
by human

human 
judgement

use SST

 
Figure 3 Classic design of SST. Human selects a 
fixed Functional Form from a pre-defined set (i.e. 
“classic” SST) and uses a parameter estimation 
method. Human judges if the results are satisfactory 
or repeats process with new functional form 

 
Proposed approach for design 
Our proposed approach tries to remove as much 
human intervention from the design process as 
possible. The first change (and maybe the most 
important) is to replace the first stage of selection of 
a pre-made functional form, with a “functional-form 
suggesting mechanism”. This mechanism will 
suggest valid functional forms that can be tested to 

see if they are good or not for the desired goal. The 
second stage remains the same, and it consists in the 
parameter estimation for the “selected” functional 
form to try to match the target sound. Another point 
where the human intervention can be reduced is in 
the “error comparison” between the output sound 
and the target sound. This comparison (error metric) 
will return a value that will be used for suggesting a 
new functional form, and it will try to minimize the 
error. The procedure is repeated until the error falls 
within acceptable limits. 
 

INPUTS OUTPUT
target

Parameter
Estimation

SST suggestion
use SST

“error” 
function

functional form + 
initial parameters

functional
elements

 
Figure 4 Suggested approach for design. Automated 
suggestion of Functional Forms, parameter 
estimation, and automated comparison of 
target/output sounds fed back in suggestion block. 

Parameter estimation 
Once a functional-form has been selected (or 
suggested), the number and type of internal 
parameters remains fixed. A technique for parameter 
estimation can be used to find a set of values for 
those parameters that will reduce the error between 
the produced output and the target sound. This is 
usually done using either mathematical analysis or 
optimization methods. The approach selected 
depends mainly in the type of functional form to be 
optimized and in the precision needed for its internal 
parameters. Some of the mathematical analysis tools 
commonly used include Fourier and Cepstral 
analysis. When a direct mathematical analysis is not 
convenient, it is possible to use a numerical method 
to approximate a “good” set of internal parameters. 
These methods explore the parameter space in a 
guided manner, and return usually a locally optimal 
set of parameters that accomplish the desired 
behavior for the SST. Note that the error metric plays 
a fundamental role in the exploration of the 
parameter space and, ultimately, in the selection of 
the parameters. 
 
DESIGN AS A SEARCH IN SST SPACE 
All the possible valid combinations of functional 
elements, connections and internal parameters 
compose the SST space.  
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Hypothesis: Given a set of inputs, a target sound and 
an error metric, it is possible to find the functional-
form and internal parameters of a SST capable of 
synthesizing an output sound “close” to the target 
sound. 
Our original goal of designing a SST (functional 
form and internal parameters) can then be stated as a 
search problem in the SST space. The next step is to 
define a search strategy to efficiently and adaptively 
explore this space and find an acceptable solution to 
our problem. The SST space has many dimensions 
and is highly non linear. Each point in this space 
represents a different SST (with different functional 
form and internal parameters). Evolutionary methods 
have been shown to perform very well in complex 
search spaces. [4, 13]. 
 
Genetic Programming (GP) 
Genetic Programming  (GP) is an 
optimization/search method that has been gaining 
popularity in the last decade. It is an extension of 
Genetic Algorithms, and both belong to the field of 
Evolutionary Computation. The idea with GP is to 
have a population of candidate solutions (in our case, 
suggested SSTs) that will be evaluated and a fitness 
value assigned to each. The fitness function gives an 
analytical measure of the performance of the 
individual and its output. Once all the individuals in 
the population have computed their fitness value, a 
new population of candidate solutions is created by 
probabilistically selecting individuals and performing 
genetic operations on them. The probability of being 
selected to be part of a genetic operation is directly 
related to the fitness of the individual: the better the 
fitness, the higher the probability. The genetic 
operations will create new individuals by: copy 
(identical copy of an individual), mutation (random 
alteration of an individual functional form and/or 
internal parameters), or crossover (characteristics of 
two individuals are fused together to create a new 
one).  The process is repeated until a candidate 
solution that shows a fitness value that fulfills the 
specifications is found, or a maximum allowed 
number of generations have been tested. 
 

 

Figure 5 Genetic Programming loop 

Fitness functions 
In any kind of optimization or search method, it is 
fundamental to have a way to measure the 
performance of the candidate solution. This 
performance metric is usually called a fitness 
function or error metric. Fitness functions (FF) give 
some numerical grade to the difference between the 
outputs of the system compared to a desired target. 
The features that are measured in a fitness function 
vary from application to application. In our case, for 
sound synthesis techniques and sound sample 
sequences (waveforms) as targets, it is usual to 
define fitness functions that measure the distance 
between two sounds, or how “similar” they are.  An 
analytical fitness function that uses the Least Squares 
Error (LSE) of the magnitude spectrograms (of 
Target and produced sounds) has been successfully 
applied by Horner et al. [1], and showed good results 
with this project. An enhancement for this fitness 
function was to include phase information. The LSE 
of the phase spectrograms, weighted with the 
magnitude of the target sound was successfully used 
in most of the test performed [7, 14]. Perceptual 
fitness functions are more difficult to compute 
because of their subjective nature. A fitness function 
that incorporates a psychoacoustic model of 
simultaneous frequency masking [15-17] was 
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developed and used successfully in some tests 
performed [7]. 
 
AGeSS SYSTEM 
A system implementing the proposed approach called 
AGeSS (Automatic Generation of Sound 
Synthesizers) has been developed and tested. The 
system is implemented as a set of binaries (compiled 
for ANSI C++) and Matlab scripts. The user is 
required to supply the parameters for the GP run, as 
well as the “examples” for the system. 
 

USER
AGeSS

SYSTEM

Inputs
- Run parameters
- Examples

Output
Suggested expression tree

 
Figure 6 AGeSS system: user input (parameters, 
examples of control signals and Target). Output 
(suggested expression tree) 

 
EXAMPLE 
The developed AGeSS system was used to perform a 
series of experiments to explore the potential of the 
suggested approach. One of them is outlined here. 
A simple FM synthesis formula was chosen for this 
experiment [10, 12], as shown in equation 1. This 
SST has been explored in depth by many researchers 
and musicians. The value of the internal parameters 
was taken from the original values suggested by 
Chowning for simulating a woodwind sound [18]. 
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fC  =  Carrier frequency = 880 , 988 = f(t) 

fM  = Modulator frequency = 880/3, 988/3 = f(t)/3 

I = index of modulation = 2 
FS = sampling frequency = 8000 
A(t) = time varying envelope 
This SST uses two time varying inputs: A(t) and f(t) 
and 3 internal parameters I, D, M. For the generation 
of the Target sound, two time varying signals were 
generated (using Matlab) to simulate the brass sound 
of two distinct notes (A880, B988) of 0.3 seconds 
each. These can be seen in Figure 7. 

 
Figure 7 Input signals (top) Envelope for two notes. 
(bottom) Normalized pitch for two notes (A880, 
B988). 

The selected fitness function uses the simultaneous 
frequency masking fitness function. It calculates the 
spectrogram of the target sound and uses this to 
calculate the threshold of masking of the target. This 
information, along with the spectrogram of the 
output sound is used to calculate a distance metric. 
 

 

Figure 8 Spectrogram and waveform of TARGET 
signal formed by two notes (A880, B988). 

 

 
Figure 9 Spectrogram, waveform and topology for 
best individual of Generation 220 

Note that the final spectrum agrees with the target in 
all the frequencies of the harmonics. But the final 
spectrum has higher energy at the high end of the 
spectrum. The topology evolved in generation 220 is 
shown in Figure 9. It is possible to analyze the 
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functional elements and their connections to find the 
close form formula representation of the topology. In 
this case, it is represented in equation 2. 
 

( )( ) ( )( )2010021 )()()()()()( ktfkosciltfosciltftfkosciltAkts +×+=
   (2) 

Comparison between equations1 and 2 shows a close 
similarity in their functional form. 
 
CONCLUSIONS 
Design is stated as a search in the multidimensional 
SST space. Each point in this space will represent a 
different functional form and set of internal 
parameters. The goal is then to find a point in the 
SST space that will fulfill the specifications of 
design. It is not clear how neighboring points are 
related in this representation. In addition, the number 
of possible points in this space is huge, making it 
impossible to do a thorough search of the space. 
These characteristics make the search of the SST 
space a very complex problem. Evolutionary 
methods, such as Genetic Programming, have proved 
satisfactory when dealing with these types of 
problems. The experiments show that the selected set 
of functional elements and the representation scheme 
are effective for the automated design of some 
common synthesis algorithms, especially the 
frequency modulation techniques.  
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